
Published by:

The Digital Library Federation
Council on Library and Information Resources

1755 Massachusetts Avenue, NW, Suite 500
Washington, DC 20036

Additional copies are available for $15.00 from the above address. Orders must be prepaid, with checks made payable to the Council
on Library and Information Resources.

The paper in this publication meets the minimum requirements of the American National Standard for Information Sci-
ences—Permanence of Paper for Printed Library Materials ANSI Z39.48-1984.

Copyright 1999 by the Council on Library and Information Resources. No part of this publication may be reproduced or transcribed
in any form without permission of the publisher. Requests for reproduction for noncommercial purposes, including educational
advancement, private study, or research will be granted. Full credit must be given to both the authors and the Council on Library
and Information Resources.

8

Preserving the Whole

A Two-Track Approach to Rescuing
Social Science Data and Metadata

June 1999

by Ann Green,

JoAnn Dionne, and

Martin Dennis

ISBN 1-887334-68-8

The Digital Library Federation

On May 1, 1995, 16 institutions created the Digital Library

Federation (additional partners have since joined the

original 16). The DLF partners have committed them-

selves to “bring together—from across the nation and

beyond—digitized materials that will be made accessible

to students, scholars, and citizens everywhere.” If they

are to succeed in reaching their goals, all DLF partici-

pants realize that they must act quickly to build the infra-

structure and the institutional capacity to sustain digital

libraries. In support of DLF participants’ efforts to these

ends, DLF launched this publication series in 1999 to

highlight and disseminate critical work.

Donald J. Waters

Director

Digital Library Federation

iii

About the Authors

Ann Green is director of the Social Science Statistical Laboratory at
Yale University, where she oversees social science research and in-
structional technologies, facilities, and support services. She has par-
ticipated in the development of standards for social science metadata
through the Data Documentation Initiative. She is vice president of
the International Association for Social Science Information Service
and Technology (IASSIST). From 1989 to 1996, she was consultant and
technical manager of the Social Science Data Archive at Yale. She was
data archivist from 1985 to 1989 at the Survey Research Center, Uni-
versity of California at Berkeley.

JoAnn Dionne is the social science data librarian at the Univer-
sity of Michigan Library where she is developing and providing data
services for the campus. From 1977 to 1998, she was the social science
data librarian at Yale University where the Yale Roper Collection was
an integral part of her responsibilities.

Martin Dennis is a Ph.D. candidate in psychology at Yale Univer-
sity. His main area of research is in human reasoning in general and
causal induction in particular. In addition to his studies, he works as a
part-time statistics and computer consultant at the Yale Social Science
Statistical Laboratory, where his responsibilities include helping users
to access Yale’s collection of public use data sets.

Acknowledgments

We wish to thank Scott Redinius of the Yale Economics Department
for his work on the TextBridge Pro portion of the project and his ad-
vice on OCR software, our scanning workstation, and developing
evaluation procedures. Soo Yeon Kim of the Yale Political Science
Department provided welcome editorial comments. Thanks also goes
to David Sheaves at the University of North Carolina’s Institute for
Social Science Research, for helping us evaluate column binary data
options and spread ASCII formats and for providing very useful SAS
programs. We also wish to acknowledge the help of Marilyn Potter
and Marc Maynard, from the Roper Center for Public Opinion Re-
search, for answering questions, rushing us replacement copies of data
sets, and sharing their xray program. We also acknowledge Kathleen
Eisenbeis, former director of the Yale Social Science Libraries and In-
formation Services, for her contributions to the early stages of the proj-
ect. And lastly, to Donald Waters for his encouragement, advice, and
support—thank you.

v

Contents

Preface .. vi
Background and Project Description .. 1
 The Yale Social Science Data Preservation Project .. 1
 The Roper Collection at Yale .. 3
 Literature Search 4

The Data Track 6
 1. Identify Equipment 6
 2. Copy Files 6
 3. Examine Documentation .. 6
 4. Define Format 7
 5. Develop Standard Classifications ... 7
 6. Read in Data 10
 7. Identify Migration Formats .. 10
 8. Recode Data Files 11
 9. Create Spread ASCII Data Files .. 15

The Documentation Track 17
 Software and Equipment .. 17
 TextBridge Pro Optical Character Recognition ... 17
 PDF Files from Adobe Capture ... 19
 HTML and SGML/XML Marked-up Files .. 22

Findings and Recommendations .. 24
 User Evaluation 24
 Findings about Data Conversion .. 25
 Findings about Documentation Conversion ... 28
 Recommendations to Data Producers .. 29

Glossary 31
Reference List 36
Appendixes
 1. Roper Report documentation page 3W: Questions 7-9 (photocopy) ... 38
 2. Sample SAS input and recode statements ... 39
 3. Data conversion formats and storage requirements .. 40
 4. Programs to create spread ASCII datasets ... 41
 5. Data map for column binary spread data .. 42
 6. Roper Report documentation page 4 W/Y: Question 10: photocopy; TextBridge Pro; PDF in
 Acrobat Exchange ... 43

Preface

Quantitative data, including social survey results, test measure-
ments, economic and financial series, and government statistics, are
vital resources for research and education in a variety of disciplines
concerned with advancing the study of individuals and society. For
decades, these data have been encoded, stored, and used primarily
in digital form. Custodians who have collected, maintained, and pro-
vided access to numeric data resources thus have been building and
managing digital libraries—and scholars and students have been ef-
fectively using them in the pursuit of historical, social, and scientific
studies —long before the term digital library came into wide currency.

Those who are grappling with an explosion of digital information
in a dizzying range of formats have much to learn from social sci-
ence data librarians and users who have relatively long experience in
managing and working with digital resources. Data producers, librar-
ians, and scholarly users have come to invest in very sophisticated
mechanisms for storing and distributing social science data. They
have achieved valuable economies of scale in data storage and deliv-
ery through consortial developments, such as the data archives held
by the Inter-university Consortium for Political and Social Research
(ICPSR). Through years of experience with repeated changes in stor-
age technologies and in the software for encoding and using the data,
they have become particularly adept at the long-term maintenance of
information in digital form.

In 1996, the Task Force on Archiving of Digital Information high-
lighted the difficulties of preserving digital information over long pe-
riods of time. As a way of addressing these difficulties, the task force
recommended in part that its sponsors, the Commission on Preserva-
tion and Access and the Research Libraries Group, seek to document
the experiences of communities already well practiced in the preserva-
tion of digital information. Responding to this recommendation, the
Commission, which has since merged with the Council on Library Re-
sources to become the Council on Library and Information Resources
(CLIR), sought out the expertise of those managing university-based
data archives. It contracted for the development of this paper with the
authors, who at the time worked together in managing the Social Sci-
ence Data Archives at Yale University, one of the oldest data archives
in American universities.

Preserving the Whole appears as the second publication of the Digi-
tal Library Federation and reflects the Federation’s interests both in
advancing the state of the art of social science data archives and in
building the infrastructure necessary for the long-term maintenance of
digital information. The paper is especially valuable as a meticulously

vii

detailed case study of migration as a preservation strategy. It explores
the options available for migrating both data stored in a technically
obsolete format and their associated documentation stored on paper,
which may itself be rapidly deteriorating. The obsolete data format
known as column binary was born in the same era of creatively par-
simonious coding techniques that have given rise to the widely publi-
cized Year 2000 (Y2K) computer problems.

Beyond its contributions to our understanding of migration as a
particular strategy for the long-term maintenance of digital informa-
tion, Preserving the Whole also provides more general lessons. It is a
remarkable finding of this study that the column binary format, al-
though technically obsolete, is so well documented that numerous op-
tions exist not just for migrating column binary files to other formats,
but also for reading them in their native format. Moreover, the authors
make the important observation that data sets will be indecipherable
and cannot survive at all, regardless of the file format in which they
are stored, if there is no effort made also to preserve their codebooks.
A codebook is essential documentation that relates the numeric data
to meaningful fields and values of information.

From more theoretical perspectives, Jeff Rothenberg (1999) and
David Bearman (1999) both emphasize the critical importance of
documentation, or metadata, for preserving digital information. The
value of Preserving the Whole is that it makes a similar argument, but
concretely and from the long experience of the data community in ef-
fectively managing digital information.

Donald J. Waters

1Preserving the Whole

I
n December 1994, the Commission on Preservation and Access
and the Research Libraries Group created the Task Force on
Archiving of Digital Information. The purpose of the task
force was “to investigate the means of ensuring continued ac-

cess indefinitely into the future of records stored in digital electronic
form.” Digital media are more fragile than paper and become un-
readable more quickly because of changes in operating systems and
applications software and the deterioration of physical media, and
because no organization has accepted responsibility for preservation.
In its definitive 1996 report, Preserving Digital Information, the task
force warned that “owners or custodians who can no longer bear the
expense and difficulty of migration will deliberately or inadvertently,
through a simple failure to act, destroy the objects without regard for
future use.”

The task force’s warning echoed the growing realization by
researchers who were using social science statistical data in digital
form and specialists who were archiving these data that major rescue
efforts to identify, locate, and preserve computer files produced with
rapidly outmoded technology could not be postponed. Because ac-
cess to social science numeric data requires metadata—accompany-
ing paper or machine-readable records—the loss of the metadata can
also mean the loss of the data file.

The two approaches to preservation of digital files under evalua-
tion in the early 1990s were refreshing and migration. Refreshing refers
to the copying of information from one medium to another without
changing the format or internal structure of the records in the files.
Refreshing digital information will suffice as long as software exists
to manipulate the format of the files. Since digital information is pro-
duced in varying degrees of dependence upon particular hardware
and software, refreshing cannot serve as a general solution for pre-
serving digital information. The task force emphasized migration of
digital information, “designed to achieve the periodic transfer of dig-
ital materials from one hardware/software configuration to another,
or from one generation of computer technology to a subsequent gen-
eration.” Migration includes refreshing the media but also addresses
the internal structure of the files so that the information within can
be read on subsequent computer platforms, operating systems, and
software.

The Yale Social Science Data Preservation Project

In 1996, the Commission on Preservation and Access commissioned
the Social Science Library and the Social Science Statistical Labora-
tory at Yale (Statlab) to identify and evaluate the formats that would
most likely provide the ability to migrate social science statistical

Background
and Project
Description

2 Ann Green, JoAnn Dionne, and Martin Dennis

data and accompanying documentation1 into future technical en-
vironments. The Yale University Library, one of the first academic
libraries to form a collection of machine-readable data, began acquir-
ing social science numeric data in 1972. Over the years, Yale has cop-
ied its data from one form of digital storage to another as mainframe
computer technology has dictated. The copying of data, while labor-
intensive, was straightforward in creating exact logical copies from
out-of-date media in newer data storage formats. In the mid-1990s,
as data use was moving from the mainframe to distributed com-
puting systems and from one hardware/software configuration to
another, digital formats began to require not just simple duplication,
but restructuring. Files produced by standard statistical software on
mainframes had to be converted into platform-independent formats
before moving to personal computers. In addition, data stored on
magnetic tapes had to be moved to new media as access to and sup-
port in using the Yale mainframe was discontinued.

Our social science data preservation project team was headed
by Ann Green (director, Statlab) and JoAnn Dionne (data librarian,
Social Science Library) with the assistance of Martin Dennis (consul-
tant, Statlab, and graduate student, psychology). We began our work
in June 1996, during a time when many academic institutions were
in the process of transferring numeric social science data sets from
mainframe environments to PC- and UNIX-based networks. Large
collections of numeric data had been successfully moved across these
platforms. Considerably less attention had been directed toward the
greater problem of developing system-independent archival formats,
while also preserving and digitizing the accompanying paper re-
cords (metadata) that must be available to analyze the data sets.

We were thus faced with a two-track preservation approach:
converting deteriorating paper (the documentation) to digital form,
and migrating digitized numeric data to an archival format that can
be read by future operating systems and applications software. The
Yale University Library had taken a lead in digitizing for preserva-
tion (Conway 1996), and we built on that base in digitizing the paper
records accompanying the data file. The Statlab had taken a lead in
migrating data collections from mainframe-dependent tape storage
to networked online storage, and we built on that base in restructur-
ing and migrating the numeric files.

On the documentation track, we scanned printed textual mate-
rial for 10 surveys selected from the Yale Roper Collection and evalu-
ated the outcomes of applying optical character recognition (OCR),
creating image files, and producing Adobe Portable Document For-
mat (PDF) files. On the data track, we investigated diligently and in
detail the implications of preserving data in their original format vs.
migrating to restructured formats. We evaluated the alternative for-
mats for migrating the original data files from tape and focused upon
the benefits and drawbacks of each alternative. Details are covered in
the Findings and Recommendations section of this report.

1 At its first occurance, a word defined in the Glossary is shown in bold.

3Preserving the Whole

While evaluations of computer storage media should not be ig-
nored in an overall strategy for planning the future costs and viabil-
ity of data collections, we did not include media evaluations in this
project. Nor did we research the intellectual property issues involved
in conversion, leaving that to a later discussion. However, there is
a long-established ethic in the social science data community that
data documentation should be shared freely. For example, the Inter-
university Consortium for Political and Social Research (ICPSR)
recently began making all its machine-readable documentation freely
accessible on the Internet.

At the end of the project in the fall of 1997, we developed a col-
lection of information, including sample programs and documents,
relevant to the project and made it available at the Statlab Web page
of the Yale Web site. The collection of information has since moved
to the Council on Library and Information Resources’ Web site at
http://www.clir.org/pubs/reports/pub83/statlab. Included in the
materials accessible at this site are:

• a link to the Interim Report to the Commission on Preserva-
tion and Access

• programs to create spread ASCII data files
• spread ASCII data file example
• sample data map for spread ASCII data file
• SAS programs for recoding data and producing ASCII data

from SAS data files
• link for downloading Adobe Acrobat Reader
• multiple examples of Adobe PDF files

The Roper Collection at Yale

The Yale Roper Collection contains materials from the Roper Center
for Public Opinion Research (the Roper Center), whose data sets
comprise a rich resource for research in political psychology and
sociology. They provide a record of public opinion research in the
United States from 1935 to the present, along with surveys conduct-
ed abroad since the 1940s. In addition to the data files, the Yale Roper
Collection includes paper records such as questionnaires, informa-
tion on sample sizes, and other notes necessary for use of the data
files. Many of the paper records are brittle, have handwritten notes,
and were produced through unstable copying technologies such as
mimeography.

 The first step in the project was to select a representative group
of documents and accompanying data files from the collection. Our
initial discussions led us to select the Roper Reports, a significant,
heavily used part of the Yale Roper Collection. The Roper Reports
have been produced since 1973 by the Roper Organization, a com-
mercial polling company now known as Roper Starch Worldwide,
Inc. The Roper Reports have 1,500-2,000 respondents, 200-300 vari-
ables, and polling for the reports is conducted 10 times per year in
the United States. Data files contain demographic information such
as age, sex, race, economic level, education, marital status, union

4 Ann Green, JoAnn Dionne, and Martin Dennis

membership, religious and political affiliation, and responses to
questions on a broad array of issues facing society such as energy,
politics, media, health and medical care, consumer behavior, educa-
tion, and foreign policy.

The Roper Reports in the Yale Roper Collection do not have
machine-readable documentation supplied with the data files. The
documentation consists of paper photocopies of questionnaires and
computer output. Some parts of the documentation are poorly du-
plicated copies with blurred text on a gray background and some
questionnaires have handwritten notes in the margins. Most of the
questionnaires are printed in multiple columns on a page with no
standard format or layout. The Roper Reports documentation col-
lection thus represents the problems inherent in the rest of the Yale
Roper Collection. Of the 200 Roper Reports in the Yale Collection at
the time of the project, 10 studies were selected across the full span of
years to include any differences in format or documentation.

Our selection of the Roper Report data files was particularly
important in the context of migrating data files. The files were stored
in column binary format with portions of the files coded in an ar-
chaic format based upon the IBM punch card. The responses of a
single case or individual interview were represented on one or more
punch cards. Each punch card had 80 columns and 12 rows. The
non-column binary format allowed a maximum of one character per
column and a maximum of 80 variables per card. The column binary
format, however, made it possible to store more than one variable
in the same column. With punches allowed in each of the 12 rows,
the maximum number of items was increased by up to a factor of 12.
This column binary format was especially popular in the 1960s and
1970s when information was stored almost exclusively on computer
cards, making it desirable to compress the data into as small a space
as possible, because it provided space for multiple answers to a
single question.

Special instructions must be given in software programs to de-
fine this unique column and row structure. Since the format is based
upon old technology, knowledge about its use and software input
formats to read it are increasingly rare. Our challenge was to find a
new format that preserved the full intellectual content of the binary
coding while allowing current and future technology to read the data
and convert the computer card punches into meaningful values.

Literature Search

We reviewed the library literature for this project and conducted
searches of the Internet. Discussion of the issues involved in ar-
chiving digital information had been well detailed in Preserving
Digital Information, so we limited our search to topics specific to the
preservation of social science numeric data and documentation. The
literature search revealed much information on imaging as a preser-
vation technique for books but little on preserving documentation
for data files (see Reference List). We uncovered no previously pub-

5Preserving the Whole

lished material on methods of preservation of electronic materials,
other than duplicate copies moved from one storage medium to an-
other. We found little information on the subject of copying data files
and changing the way they are coded. We searched for reports on
the conversion of multiple-punched data to other formats but found
nothing. Nor did we find any discussion of standards for such con-
versions nor of the validity of various numeric data storage formats
as archival media.

In addition, we inquired of the Center for Electronic Records of
the National Archives and Records Administration (NARA), Archi-
val Research and Evaluation Staff, to identify any standards they
follow internally. NARA retains numeric data in the format they are
received but will transform them on request (Adams 1996). There
had been discussion among members of the data archive community
about whether column binary was an acceptable archival format, but
we found no published discussion of this issue. We also searched
for reports on the use of proprietary formats in archiving electronic
records. Again, we found almost no mention of numeric data in the
published literature.

On the Web site of the ICPSR, we found one discussion of the
conversion of questionnaire-type information from paper to elec-
tronic formats using OCR as opposed to imaging. This type of infor-
mation may also be found in the business records management lit-
erature, which we did not review. JSTOR, the Journal Storage Project,
was making images of journal pages available to subscribers via the
Web and using OCR to index the pages (JSTOR 1996). This approach
seemed to overcome the limitations of using either imaging or OCR
technology alone.

We concluded that we needed to extrapolate from the more gen-
eral literature on archiving textual data, which emphasized the desir-
ability of storing information in formats independent of hardware
and software (NARA 1990). The perils of using formats that depend
on hardware and software in the case of textual data had been de-
scribed by Jeff Rothenberg (1995). We had no reason to expect that
numeric data would be any different.

During 1995 and 1996, we followed discussions on the informal
list for ICPSR Official Representatives and the listserv for members
of the International Association for Social Science Information Ser-
vice and Technology, especially on the use of PDF for storage and
distribution of codebooks. The discussions focused on the concern
that PDF was not an acceptable archival format and would require
reformatting during the lifetime of the documents. ICPSR also pub-
lished a discussion of this issue (1996).

6 Ann Green, JoAnn Dionne, and Martin Dennis

The preservation project’s goals for the data track were to develop
and evaluate a process of migrating digital numeric information from
computer tape to hardware- and software-independent formats and
to evaluate the utility of the resultant formats. The process of migrat-
ing was broken down into a series of nine steps.

1. Identify equipment
2. Copy files from mainframe-based media to local hard disks
3. Examine the documentation
4. Define the column binary format
5. Develop standard variable-naming classifications
6. Read in the data files with SAS and SPSS
7. Identify migration formats
8. Recode data files with SAS
9. Create spread ASCII data files without recoding

1. Identify Equipment

The computing environment used for the project consisted of IBM
mainframes (all commands were submitted as JCL batch jobs issued
from a CMS-based IBM mainframe to an MVS mainframe with tape
access), and PC/Intel (Pentium 90) computers running Microsoft
Windows for Workgroups on a Novell network.

2. Copy Files

We copied the column binary data files from old round reel tapes to
new 3480 IBM cartridges on the Yale mainframe. This was the first
step in refreshing the data from the old tape medium to a more stable
magnetic medium. Next, the data were copied from the cartridges to
mainframe disk and moved via standard file transfer protocols (in
binary mode) to the Statlab Novell server, the home for the SAS pro-
gram writing, record keeping, and output storage.

Once transferred to disks connected to the server, each data set
was checked with a simple program that read in one variable—the
deck or card number—for each observation in the original data file.
The number of observations for each deck number was then com-
pared with information in the documentation. Any discrepancies
were noted and data files reordered from the Roper Center if errors
were confirmed.

3. Examine Documentation

The primary document for a particular Roper Report was simply a
copy of the original survey questionnaire containing the questions
asked in the survey. The card number and column number (or num-
bers) for locating the question in the record for each respondent were
given for each question. Furthermore, the punch location was listed
for each response option in the question. All of this information—
card number, column location, and punch location—was necessary
for reading the original column binary data.

The Data Track

7Preserving the Whole

The questionnaires varied in length and, in some cases, multiple
versions of a questionnaire were provided. For example, some of the
surveys used a split sample, either to ask different questions or to
ask the same questions in different sequence. Often, the questions
asked of the two groups in the split sample were not identical. In
some cases, the column location and format of the different vari-
ables were identical. The samples could differ in the order of items
in a multiple-response question, or in using slightly different sets of
items. In other cases, the format of the questions (along with their
column and row locations) changed radically between samples.

The xray, a special form of printed output supplied by the Roper
Center, provided a response frequency used to check the data during
the migration processes. Organized by card, column, and row, the
xray gave the total number of punched bits across observations for
each variable in the data set. The xray also provided useful informa-
tion about the types of questions being answered and the complex-
ity of reading the column binary format. Because each question was
usually encoded in its own column, the sum of all of the responses
(plus any blank observations), for most types of questions, should
add up to the total number of people in the survey. If it did not, then
the question allowed multiple responses and would need to be read
in a different manner from single response variables.

4. Define Format

The structure of the column binary format is illustrated in table
1. The sample question shown in the table uses two columns (47
and 48) to cover all the possible answers. The full text of this ques-
tion may also be seen in Appendix 1. Each card contains 12 rows
numbered from top to bottom, beginning with 1 at the top. Punch
numbers are assigned in a different way: a 12 punch goes in the top
row, an 11 punch in the second row, and the third through twelfth
rows are reserved for 0 through 9 punches. The 11 and 12 punches
are often used for “don’t know,” “no answer,” or “not applicable”
responses. In this example, a respondent chose the values 1, 2, and 4
(“living in poverty,” “being abused as a child,” and “drug abuse”),
so punches were made in rows 4, 5, and 7, as shown in the last col-
umn of the table.

In this question, both columns 47 and 48 may have multiple
punches representing the choices people were allowed to select from
the list of causes of violent crime. Alternatively, in the non-column
binary scheme allowing only one punch per column, each possible
selection would have to be coded as a separate variable and therefore
as a separate column, so coding of this question would take up 18
columns rather than two.

5. Develop Standard Classifications

A standard classification of types of variables, based upon the types
of questions asked in the surveys, was used in the construction of

8 Ann Green, JoAnn Dionne, and Martin Dennis

data set translation. The classification provided a scheme for the cre-
ation of standard templates and the logic behind the variable types
used in recoding the data. In addition, the classification made it eas-
ier to construct appropriate variable names and to ensure consistent
naming across data sets. Each of the variable types we defined re-
quired different variable-naming, formatting, and recoding procedures.

The four basic types of variables are regular numeric variables,
numeric variables with special missing values, multiple-response
questions, and single-response questions. Each variable type was as-
sociated with a different template for code creation, a specific form of
variable names, and certain projected difficulties in recoding. For in-
stance, a multiple-response variable was read in with a simple list of
single-punch variables, was labeled simply with letter suffixes, and
was not recoded. In contrast, an aggregated single-response variable
was read in with a list of single-punch intermediate variables, was
labeled with intermediate number suffixes, and was recoded into
a final variable for the entire question. Retrieving the variable type
directly from the documentation provided a guide to the particular
piece of program code that was necessary for inputting and recoding
the variable.

Table 1. Question coding example

Roper Report 9309, Question 8W: “…which three or four things do you think are the main causes of people

committing violent crimes?”

sesnopseR
nmuloC
noitacol

woR
hcnuP
rebmun

dehcnuP

ytrevopnigniviL.a
gnorwmorfthgirgnihcaettonstneraP.b

dlihcasadesubagnieB.c
esubagurD.d

smargorpVTnieeselpoeptahW.e
slaromfokcalA.f

noitacudefokcalA.g
tinimrahynagnieestonnosrepA.h

elbisnopserrigniebnosrepA.i
sdneirffoecneulfnI.j

esubalohoclA.k
seivomnieeselpoeptahW.l

74 4
5
6
7
8
9
01
11
21

3
2
1

1
2
3
4
5
6
7
8
9
0

)Xro(11
)Yro(21

X
X

X

.cte,snugyotfognitekramdnagnisitrevdaehT.m
tegotysaeootgniebsnuG.n

dehsinupgniebfoecnahcwoL.o
yhpargonropgnieeS.p

84 4
5
6
7

1
2
3
4

esehtfoenoN
wonkt'noD

8
1

5
)Yro(21

9Preserving the Whole

Regular numeric variables. Regular numeric variables range from
0 to 9. The values are computed by filling in each digit with the num-
bers in the appropriate columns. For example, Roper Report 9309,
Question 68Y, asked “Do you think government lotteries produce an un-
wholesome gambling spirit in this country? Yes=1, No=2”

Numeric variables with special missing values. These variables are
identical to regular numeric variables, except that there can be one
or two special missing values (such as “don’t know”), recorded at
punch 11 and/or punch 12. For example, Roper Report 9309, Ques-
tion 2X, asked, “Do you feel things in this country are generally going in
the right direction today, or do you feel that things have pretty seriously
gotten off on the wrong track? Right track=1, Wrong track=2, Don’t
know=Y”

Multiple-response questions. Multiple-response questions generally
ask respondents to choose more than one option from a list of items,
as in Roper Report 9309, Question 8W illustrated in table 1. If an item
was checked, it was coded as 1 in the recoded data set; if it was not
checked, it was coded as 0. Therefore, for any such question, there
would be multiple binary variables corresponding to all of the pos-
sible responses (including special missing values), so that each pos-
sible response became a variable in a final recoded data set.

Single-response questions. Single-response questions allow one,
and only one, response per item. They frequently include a special
missing value at punch number 12, with several answer options be-
tween punch numbers 1 and 9. These questions require appropriate
recoding for the final variable. For example, Roper 9309, Question
7Y, asked, “And thinking about crime in the United States, what one type
of crime do you feel presents the biggest threat for you and your family to-
day?” An example of multiple-column storage of a single-response
question appears in table 2.

Table 2. Example of multiple-column storage of single-response question

esnopseR
hcnuP
rebmun

nmuloC
noitacol

tfehtotua,yrebbor,yralgruB.a
msinagilooh/msiladnaV.b

gnikat-ebirbtnemnrevog,noitpurroclaiciffO.c
redruM.d

epaR.e
tluassA.f

noitrotxe,gnireetekcaR.g
sgurD.h

noitutitsorP.i
gnildniwsdnanoitalucepS.j

rehtO.k
evobaehtfoenoN

wonkt'noD

1
2
3
4
5
6
7
8
9
0
1
2
Y

54

64

10 Ann Green, JoAnn Dionne, and Martin Dennis

6. Read in Data

The first step in the SAS programming process was reading in the
data using one of the three SAS column binary informats: PUNCH.
d, CBw.d, and ROWw.d. The informat PUNCH.d reads a specific
bit (with a value of either 0 or 1) in the original data set. The d value
indicates which row in a column of data is to be read. The informat
CBw.d, on the other hand, looks to see which one of the 10 numeric
bits (0 through 9) has been punched, and returns that number as a
value for the column. ROWw.d begins reading at a user-specified bit,
looks to see which one of a user-specified number of bits (after the
first) has been punched, and returns a number equal to the relative
location of the punched bit. For instance, a ROW5.5 informat would
start reading at PUNCH.5 and continue for four more bits through
PUNCH.9; if bit 8 was punched, then the ROW5.5 informat would
return a 4. The PUNCH.d informat was the most appropriate for this
project. For clarification of its use, refer to the sample SAS program
in Appendix 2. Depending on the final form of the question, the pat-
tern of punches in a column usually had to be logically recoded later
in the program from an intermediate variable to a final variable that
matched the response options in the original documentation.

The Statistical Package for the Social Sciences (SPSS) is also able
to read data, including multiple-response question responses, from
a column binary data file by using the keywords MODE=MULTI-
PUNCH on the FILE HANDLE command. An example of an SPSS
program that reads a single variable from Roper Report 9309 data
with SPSS is:

 file handle test / name=’h:/roper/rprr9309.bin’ /recform=fixed /

 mode=multipunch/lrecl=160.

 data list file=test records=9 /1 feddep 24 (A) /9.

 execute.

In this example, a variable called FEDDEP is read in column 24. It
has a possible Y coded as “don’t know”, requiring that SPSS read this
variable as a character string (see also SPSS 1988, 84-86).

7. Identify Migration Formats

We selected the following formats to test the migration process:
• SAS system files of recoded column binary data, with and

without intermediate variables
• SAS system files with shortened integer byte lengths
• SAS export files of recoded column binary data
• ASCII files produced from recoded column binary data
• ASCII files of the binary data patterns in the original file,

called spread ASCII
These formats were selected on the basis of the software’s ability to
read the column binary format, the availability of project staff pro-

11Preserving the Whole

gramming expertise, the transportability of output formats, storage
requirements (size of output data sets), and long-term archival impli-
cations. While both SAS and SPSS software are able to read column
binary data, the staff members working on the project had more ex-
perience with SAS, so we chose to work with that statistical package.
With the exception of spread ASCII data files, each format we select-
ed for testing contained completely recoded and renamed variables.
Storage requirements were compared on the different platforms for
many of the different types of SAS data files, as shown in Appendix 3.

8. Recode Data Files

Create intermediate variables and code missing values. After reading in
the data with the SAS informat statements, the second step in the
SAS programming process was to produce a set of if-then statements
for recoding the individual punch data (the intermediate variables)
into final variables. Each intermediate variable needed to have a
column location, row location, variable name, and SAS informat
instructions specified in the input statement, as seen in the example
shown in table 3. The only things that changed while inputting this
variable Q14 were the suffix and punch location for each intermedi-
ate variable. This redundancy increased when there were more inter-
mediate variables, and especially with aggregated single-response
variables. The logical statements used for recoding the intermediate
variables also contained many repetitions of the same if-then com-
mands.

Since the creation of these translation programs in SAS involved
a large amount of repetitive typing, we created templates for both
the input and recoding statements. Templates were created for sin-

Table 3. Example of variable location, name, and SAS informat statement

noitacolnmuloC emanelbairaV
dnanoitacolwoR

tamrofni

03@ 1_A41Q 1.HCNUP

03@ 2_A41Q 2.HCNUP

03@ 3_A41Q 3.HCNUP

03@ Y_A41Q 21.HCNUP

13@ 1_B41Q 1.HCNUP

13@ 2_B41Q 2.HCNUP

13@ 3_B41Q 3.HCNUP

13@ Y_B41Q 21.HCNUP

12 Ann Green, JoAnn Dionne, and Martin Dennis

gle-response variables (simple and aggregated), multiple-response
variables, and numeric variables with special missing codes. Each
template included generic characters for column locations, variable
names, and SAS informats, as well as pre-formed logical recoding
statements. Furthermore, the templates contained repeated lines of
code for different numbers of punches or aggregate variables so that
it would not be necessary to enter the redundant information for the
different variables.

These templates considerably sped up translation code creation.
Once the type of the current variable had been determined, the ap-
propriate input and recode statements were copied from the tem-
plate file, pasted into the program code, and then the key characters
(such as column location and variable name) were replaced using
a find/replace function in the text editor. For example, to create the
code for variable Q14, a piece of the template would have been cop-
ied from the template file and pasted into the program, as illustrated
in table 4. The aggregated single-response variable template includ-

/* Three options + NR */
(for INPUT command)
 @COL1 Q000A_1 PUNCH.1
 @COL1 Q000A_2 PUNCH.2
 @COL1 Q000A_3 PUNCH.3
 @COL1 Q000A_Y PUNCH.12
 @COL2 Q000B_1 PUNCH.1
 @COL2 Q000B_2 PUNCH.2
 @COL2 Q000B_3 PUNCH.3
 @COL2 Q000B_Y PUNCH.12

(for recoding statements)
 IF Q000A_1=1 AND Q000A_2=0 AND Q000A_3=0 AND Q000A_Y=0
THEN Q000A=1;
 IF Q000A_1=0 AND Q000A_2=1 AND Q000A_3=0 AND Q000A_Y=0
THEN Q000A=2;
 IF Q000A_1=0 AND Q000A_2=0 AND Q000A_3=1 AND Q000A_Y=0
THEN Q000A=3;
 IF Q000A_1=0 AND Q000A_2=0 AND Q000A_3=0 AND Q000A_Y=1
THEN Q000A=9;
 IF Q000B_1=1 AND Q000B_2=0 AND Q000B_3=0 AND Q000B_Y=0
THEN Q000B=1;
 IF Q000B_1=0 AND Q000B_2=1 AND Q000B_3=0 AND Q000B_Y=0
THEN Q000B=2;
 IF Q000B_1=0 AND Q000B_2=0 AND Q000B_3=1 AND Q000B_Y=0
THEN Q000B=3;
 IF Q000B_1=0 AND Q000B_2=0 AND Q000B_3=0 AND Q000B_Y=1
THEN Q000B=9;

Table 4. Examples of SAS input statements and recoding statements

13Preserving the Whole

ed input and recode statements for sub-questions from A through Z;
only A and B are shown in table 4.

Then the string Q000 would be replaced with Q14, and COL1
and COL2 would be replaced with 30 and 31, respectively, resulting
in the final code for inputting and recoding the variables Q14A and
Q14B.

Create macro programs to recode data files. Given that we could
define fairly well the different types of variables in a data set, and
that we could create input and recode template statements for these
different variable types, it was tempting to think that we would be
able to write programs to automate the whole procedure. That is, we
might imagine a program that could perform all of the operations
described above with minimal effort from the human operators.
Although such automation may be possible in the future, the irregu-
larity of the data files presented a major obstacle. Not only would
an automatic translation program have to deal with some of the com-
plexities of, for example, split samples with different variable types
in the same column, but it would also have to handle the different
types of errors that occur in the original data files.

For example, one fairly straightforward solution (though quite
a lot of work) would have been to create a program that received
some sort of variable list from a human operator, set up logical con-
ditions to create code around split samples, and then write out a SAS
program to translate and recode the data file. More sophisticated er-
ror-checking would have been necessary, however, to handle simple
events such as a variable being incorrectly marked as a single-re-
sponse type in the documentation, but actually having multiple re-
sponses coded in the data. Because the recoded data files needed to
be of archival quality, this error-checking would have had to be quite
rigorous. Furthermore, judgment calls would have sometimes aris-
en when dealing with irregularities (that is, should the variable be
recoded differently or should the irregularity be ignored), so that
leaving the decision solely to a computer program was not advis-
able. In short, creating an automatic translation program to recode
the data would have involved several compromises that we would
not recommend.

Debug programs and check data. Several types of errors occurred
in the SAS programming: typographic errors, invalid informats, and
unexpected changes in variable types (where the questionnaire did
not match the data). The key indicators for these problems were IN-
VALID DATA warnings that appeared in the SAS log.

Once the programs ran without INVALID DATA messages, the
accuracy of the translation needed to be checked. Complete frequen-
cies for all of the variables in the final data set had to be compared to
the frequencies in the xray.

14 Ann Green, JoAnn Dionne, and Martin Dennis

For example, if variable Q9 (deck 1, column 30) had the follow-
ing frequencies (in this case, PUNCH.12 was recoded to the missing
value of 9):

then the xray for deck 1, column 30 should look like this :

It was necessary to check all of the variables in the final data set,
because one badly coded variable in the conversion job could com-
promise the archival integrity of the entire data set. Unfortunately, a
random subset of variables may miss the errors. If there was a mis-
match between the xray and the frequencies, the difference needed
to be tracked down and the SAS job edited. This frequency check
was also the last chance to resolve ambiguities between the type of
variable listed in the documentation and that shown in the xray. One
final point to note during this check was the maximum number of
possible digits in a recoded variable. If the data set was to be output
in ASCII format, then the number of digits in the special missing val-
ue should be equal to the number of digits in the regular values. That
is, if a variable had values 1 through 3, then the special missing value
should be 9; if it had values 1 through 12, then the special missing
should be 99; and so on.

Save recoded data. The final step in the reading and recoding pro-
cess was to write to disk the resultant SAS data sets. For recoded SAS
to SAS export files, we saved the files as SAS system files and export
files with all intermediate and recoded variables, and as SAS system
files and export files with just the recoded variables (see Appendix 3).

For recoded SAS to ASCII, once the SAS data set had been com-
pletely debugged and double-checked, PUT statements could be
written to create an ASCII version of the recoded data (see Appen-
dix 2). The simplest way to write these PUT statements was to copy
the INPUT statements from the original job (or from the recoding
statements), strip off the column binary informat information, and
manually type in the new column locations for each variable. These
PUT statements had two advantages: unlike automatic translation
programs, they created ASCII data files with minimum wasted space
and the PUT statement itself could be distributed as a data dictionary.

For the first data set translated, an ASCII version of the recoded

hcnuP
noitacol 21 11 0 1 2 3 4 5 6 7 8 9

muS 304 0 0 092 0031 0 0 0 0 0 0 0

eulaV ycneuqerF

1 092

2 0031

9 304

15Preserving the Whole

SAS data set was created using an automatic translation program
called DBMSCOPY, version 5.10. However, this ASCII data set was
not satisfactory. Although the translation program automatically cre-
ated a data dictionary (based on the variable names in the SAS data
set), the ASCII data set was not compact. The translation program
seemed to be incapable of concatenating one variable’s width of col-
umns against the previous variable’s columns, so that there would be
no wasted space within the flat data set. Instead, the program insert-
ed multiple spaces between each variable, which allowed a differing
number of characters within each variable, but also inserted approxi-
mately 10 ASCII space characters between each variable. Because of
the enormously increased storage requirements this insertion causes,
this approach to creating ASCII data files was abandoned and pro-
gram code for creating compact ASCII data files was written in SAS.

9. Create Spread ASCII Data Files

The original column binary data files did not necessarily have to be
recoded during the translation process. Another possible method of
translation was simply to convert, or spread, the column binary into
ASCII data. Spread ASCII data files keep the binary structure of the
column binary data, but encode each 0 or 1 as an ASCII character.
For example, the following column in the original data (each 0 or 1 is
one bit)
0
0
0
0
1
0
0
0
0
0
0
0
would become 000010000000 in the spread version. While this exam-
ple uses a single-response variable, multiple-response questions may
have more than one bit with a value of 1 in the column. To create a
spread version of the data, each bit (or punch) in the column binary
file could be read (via SAS in our case) as an individual variable;
each variable was then written to a new ASCII data set. Because the
punches in the column binary data were rectangular, and because the
variables being written out did not have to be meaningfully recoded,
the SAS code itself was largely a simple iteration, over columns and
rows, of INPUT and PUT statements.

The iterative nature of the SAS program suggested that a macro
program could be written to automate the creation of SAS code. A
simple C program was written based on this iteration over columns

16 Ann Green, JoAnn Dionne, and Martin Dennis

and rows. After prompting the user for unique information—the
name of the SAS program file to be created, the name of the data set
to be created, the name and path of the column binary file, and the
number of decks and record length (LRECL) of the original data—
the C program simply looped over columns and rows. The program
passed through the loop twice. In the first pass, the program created
an INPUT statement that would read in each punch (looping over
columns and rows) as a new variable. The second pass created a
PUT statement in which each new variable would be written to an
ASCII file. The C program was not itself reading or writing the data
files; instead, it created many repetitive lines of SAS code to read and
write the data files (see Appendix 4).

Each card of column binary data was translated to a line of
ASCII data. Since each card contained 960 data points (80 columns
by 12 rows), each line of ASCII data contained 960 characters. The
spread ASCII data set expanded about 600 percent from the original
size. It took about 15 minutes to create the spread ASCII data on the
IBM PC network, including all steps from running the C program to
writing out the ASCII data.

We investigated the formats currently distributed by the Roper
Center and the Institute for Research in the Social Sciences at the
University of North Carolina at Chapel Hill (IRSS) to determine
their utility over time, and to evaluate them in light of our findings.
Both distributors were producing what we call the hybrid spread
ASCII data files from the original column binary files. These files are
produced by horizontally concatenating the data into a new format.
The first 80 columns of the data set contained the 80 columns of the
original file; however, any binary encoding of variables with mul-
tiple-punch coding was converted to ASCII. The entire file was then
converted to spread ASCII and the resultant data were appended to
the end of the record. Users could access the non-binary data in the
original column locations; if they needed to access data that were
originally punched in the binary mode, they could read those data
from the spread ASCII portion of the record. Data dictionaries were
produced that mapped the location of variables from both the origi-
nal 80 columns and the spread ASCII portion of the record.

We obtained sample programs from IRSS to help us evaluate these
hybrid spread file formats. We also acquired sample data files from
IRSS and the Roper Center, with their enhanced data dictionaries, to
evaluate their utility. We then adapted a SAS program from IRSS to
produce the data map showing the new column locations of the data
items. This data map allowed for quick translation from the column-
by-row information necessary to read column binary data, to the col-
umn-only information necessary to read the spread ASCII data. A note
at the top of the data map showed the order of punches in the spread
ASCII data. For example, for a response located at column 56, row 1 in
the original data set, the data map showed the same response’s loca-
tion as column 661 in the ASCII data set; a response at column 56, row
5 would be located at column 665; and a response at column 56, row
Y(12) would be located at column 672 (see Appendix 5).

17Preserving the Whole

Several options were available for digitizing the documentation, in-
cluding image scanning, OCR, combinations of image and text (PDF
format), and text encoding. The initial part of the project included
identifying formats to test and set up the scanning workstation.
Complete documentation for each file was scanned, including the
questionnaires, xrays, frequency counts, data maps, and other meta-
data whenever available.

Software and Equipment

The scanner used was a Hewlett-Packard ScanJet 4c with a document
feeder and SCSI connection to an IBM 750-P90 PC. All files were
stored on an external SCSI Iomega Jaz drive. For a major scanning
project, a fast machine with 32 MB of memory was required. Also,
a PCI bus SCSI card speeded up transfer rates from the scanner to
the computer. An automatic document feeder reduced the labor by
automating the page turning. Such labor-saving devices are cost-ef-
fective because scanning operations tend to absorb a lot of resources
and to constrain work on other major tasks while the scanning is in
progress.

Scanners differ in speed, and, for a given scanner, speed varies
with the desired scanning resolution. Speed could be an important
factor in making a purchasing decision for a major project, as it can
have a considerable impact on labor costs. For the HP 4c, the time it
takes to scan a page varied with the desired resolution as indicated
below.

TextBridge Pro Optical Character Recognition

We first scanned the documentation for one Roper Report using
the OCR software TextBridge Pro. We reviewed alternative OCR
software products and, finding no significant benefits to using one
over another, chose a package with which the staff had experience.
Initial evaluation of the OCR output showed that there were signifi-
cant numbers of errors in the resultant ASCII text. We tested various
resolutions and documented time taken for setup and for scanning,
optimum settings, range of file sizes, quality of proofing summaries,
and procedures to follow.

The questionnaires we scanned with the TextBridge Pro soft-
ware had an unacceptable rate of character recognition, including
incorrect location information necessary for manipulating the ac-
companying data files. Handwritten notes were completely lost and
the editing costs of reviewing the output and changing all errors

The
Documentation
Track

noituloseRderiseD deepSrennacS

ipd006 sdnoces03

ipd003 sdnoces5.7

ipd002 sdnoces3.3

18 Ann Green, JoAnn Dionne, and Martin Dennis

would have been prohibitive. This format did not present us with an
adequate archival solution to preserving the textual material, so no
further documentation was scanned using this process. TextBridge
Pro does not work well with poor originals, determining optimum
scanning settings was very time-consuming (and sometimes impos-
sible), compression formats did not give good results, and raw ASCII
format required time-consuming reformatting (see Appendix 6 for a
photocopy of a page from Roper Report 9309, Question 10, and for
the TextBridge Pro sample output of the same question).

Document condition. When used with printed clean originals,
OCR is very accurate even when the font size is small, and can
replicate the formatting of the original document. For example,
TextBridge Pro is capable of producing low-resolution images and
exporting both images and text to a word processing document that
retains the format of the original printed page. However, there are
far more problems with this process when the quality of the original
is anything less than perfect, as in our case. TextBridge has a par-
ticular problem with italics and underlining, even with good quality
originals.

TextBridge Pro also does not work well with columns and has
some difficulty recognizing tables and columns in originals, let alone
poor photocopies. This problem gets much worse when some of the
entries in some of the table cells are blank because the columns get
shifted; cleaning up the resulting output files becomes a major un-
dertaking.

Scanner settings. TextBridge Pro allows considerable control over
the way in which the document is scanned in as an image. For some
settings, this task can be delegated to TextBridge Pro by setting op-
tions to “automatic”; in other words, TextBridge Pro tries to figure
out what works as it scans the page. But TextBridge Pro does not
always make these determinations successfully. Nor are photocop-
ies ideal for scanning, particularly if not all of the characters are
completely clear and if not all of the pages are of the same lightness/
darkness. Successful recognition requires changing the settings pe-
riodically to account for the varying quality of the photocopies. Two
outcomes are possible if the settings are not optimal: in some cases,
the program is unsuccessful in recognizing text that is legible in the
original; in others, it gives the frustratingly cryptic error, “page too
complex for selected mode.”

We finally became convinced that there was no simple system for
setting these options. In the worst case, it was a frustrating process
of trial and error. Too dark a setting meant that the program tried
to decipher each small dot on the page as though it were part of a
character. As a result, it was not possible to use 600x600 resolution
in cases where originals were speckled. Likewise, selecting the “text
only” option for the original page format forced the program to try
to convert everything on the page into text, including imperfections
in the image or dark binding patches. On the other hand, sometimes
the auto brightness setting scans were so light that no text was rec-

19Preserving the Whole

ognized on the page. In some cases, we spent hours trying to correct
the settings manually.

Proofing text. TextBridge Pro provides an optional feature that
facilitates the correction of recognition errors. When text is scanned,
it is possible to save “proofing text.” This information is used by spe-
cial modules that are installed into WordPerfect or Word and are im-
plemented as macros. If the relevant module is installed and the doc-
ument opened in the word processor, all words are highlighted that
TextBridge Pro was unsure it recognized. The color of the highlighted
word indicates the confidence TextBridge Pro has in its accuracy.

 TextBridge Pro can be taught to recognize particular fonts with a
higher degree of accuracy through a period of training during which
it asks the user to help it recognize ambiguous characters. We did not
use this feature extensively. Our limited experience showed it does
increase the likelihood of successful recognition if originals were
poor but not truly awful. The effort is only worthwhile if the same
types of fonts will be encountered often, which was not the case with
the Roper Reports documentation.

Final format. The available formats into which the output text
can be saved depends on the options selected. There are a very large
number of possible word processor, text, and spreadsheet formats.
However, if “save proofing text” is selected, then the file can be
saved in only Word or WordPerfect format. Similarly, if “reconstitute
text” is selected, only file formats that support fairly complex format-
ting are available. When formatting text with the “reconstitute text”
option, TextBridge Pro will use some of the new “style” features of
WordPerfect or Word in the new document. This can make subse-
quent editing cumbersome. Though the styles themselves can be
edited, an alternative is to save in a file format that supports the text
features that are being “reconstituted” but does not support “styles.”
In this way, the formatting will appear as regular tabs, font changes,
and so forth, that can be directly edited. The editing of ASCII text
to recreate the format of the original is a major undertaking and the
time required to reformat each document is extensive. We found that
getting pagination to match the original is particularly difficult.

The scanned images produced by TextBridge Pro can be stored
in CCITT-3, a compression standard, for later processing, but the
results from the subsequent processing of these images were not as
good as those obtained from processing the images directly from the
scanner. We decided that using these compression formats would not
give usable results.

PDF Files from Adobe Capture

The next step in the documentation portion of the project was to
produce documents in the portable document format (PDF) used by
Adobe Acrobat, a widely accepted de facto standard for encoding
electronic documents. The viewing software provided by Adobe al-
lows for reading and searching the text, viewing the structure of a
document, and printing high-quality hard copy. PDF documents pro-

20 Ann Green, JoAnn Dionne, and Martin Dennis

vided clear, accurate reproductions of the questionnaires. The Adobe
Capture software produced an interim ASCII text file that could be
edited to improve text searching. An example of a viewing screen
may be found at the end of Appendix 6.

Basic structure of Acrobat files. Adobe Acrobat files (distinguished
by the PDF suffix on the file names) can contain both text and image
information from the original document. There are different types of
PDF files containing different kinds of information: normal PDF, im-
age-only PDF, and image+text PDF.

Normal PDF files, by default, display the text information de-
rived from the OCR process. Where the text information is unknown
(when there is a nontext picture on the page or there were difficulties
in the OCR process), a normal PDF file will insert the original image
into that space on the display page. Image-only PDF files are, in ef-
fect, paginated pictures of the original pages. Like tagged image file
format (TIFF) files, the text in these images is not searchable. Like
image-only files, image+text PDF files show the image of the original
pages, but also contain searchable text.

The image+text files were chosen as the most appropriate for
this project. The user would see a faithful reproduction of the origi-
nal documentation (complete with handwritten notes) with the PDF
browser, but could also search for specific text within the document.
If text in the search function looked suspicious, a user could view the
original image. In comparison, files produced by OCR programs con-
tain only the text information, with no way to double-check the text
against the image of the original.

Adobe Acrobat Capture procedures. When scanning the document
with the Capture software, a set of pages was scanned in sequence.
Each page was stored as a separate TIFF file, with the filenames
numbered sequentially. For example, a 40-page document produced
40 TIFF files, named page01, page02, through page40. These original
image files in TIFF format were stored separately from the final re-
formatted PDF documents, providing a set of image files for digital
storage.

When translating the images into editable text, the TIFF files
were concatenated into a single document during the OCR scanning
process. Acrobat Capture analyzed the page layout and grouped
text into regions. It then identified characters and grouped them into
words. The words were looked up in the Acrobat dictionary (which
can be customized) and spelling suspects noted. Fonts were analyzed
and font suspects identified. The interim text layer of the final PDF
file contains no image data and can be edited with the Capture Re-
viewer so that the text matches the original document as closely as
possible. During the OCR process, each word was assigned a confi-
dence rating, representing the software’s estimate of its OCR accuracy.

For the searchable text of the final PDF file to be as accurate as
possible, many OCR errors were corrected by editing the interim
files. Fortunately, the program used to edit interim files, Acrobat
Capture Reviewer, would highlight words whose confidence levels
fell below a certain threshold, or that were not included in a diction-

21Preserving the Whole

ary file. The majority of unrecognized words could be easily spotted
and corrected to match the original document. Although the Re-
viewer software allows one to change fonts and other formatting op-
tions, the only editing necessary for the project was in the content of
the words used for searching purposes (words used to locate terms
in question text and variable coding). Since the user would see only
the image reproduction of the original, the underlying ASCII text
need to be reformatted as a visual reproduction of the original. Once
the document was edited, it was then saved in the image+text PDF
format.

Time and storage requirements of PDF files. The total time required
to process a 39-page document was approximately four hours, from
scanning to saving the final PDF. The scanning itself took 30 minutes;
the OCR process took 20 minutes; and editing the resulting file took
3 hours 15 minutes. The storage space required for this document is
shown in table 5.

Documentation for the other nine Roper Report data files was
also scanned and edited. Some data files with split samples had
dual documentation. The time taken for the scanning process using
a document feeder ranged from 5 to 30 minutes. The OCR software
took between 15 and 35 minutes to process each document. The time
taken to edit each document varied widely, from one to eight-and-a-
half hours. The time it took to complete a single document depended
largely on the quality of the original. Features such as background
shadows, crooked lines of text, compressed fonts, jagged edges on
letters, and handwriting increased both the time it took the OCR
software to process the page, and, more importantly, the time it took
to edit or insert accurate, searchable text. In some cases, blocks of text
were so unrecognizable that whole questions needed to be typed in as
hidden search text. Additional time was required for error-checking.

Problems encountered in text recognition and editing of PDF files. Al-
though Adobe Acrobat Preview highlights most words with low con-
fidence levels, some forms of errors are not so easily detected during
the editing phase.

Table 5. Example of storage space required
for Acrobat PDF files

epyTeliF ecapSegarotS

selifFFIT93 BM91.1

elifegamidetalloc BM24.1

:selifFDPlanif
)egami(FDPlamron

FDPtxet+egami
BK429
BM94.1

eliftuptuoIICSA BK001

22 Ann Green, JoAnn Dionne, and Martin Dennis

• A word was not recognized as a block of text by Capture
software during the OCR process. This means that instead
of a text form of the word, the document included simply a
bitmapped image of the word from the original page. Such
an image, of course, would not be searchable. Fortunately,
these image blocks had some telltale signs. First, they ap-
peared to be in a font that was usually quite different from
the fonts assigned to the recognized words. Also, they were
usually surrounded by a fine gray or blue box. After some
experience, an editor could quickly spot the image boxes as
the page was being read. Although these image boxes could
not be changed to text, a Reviewer command can be used
to insert hidden search text underneath them. A later search
would highlight the image as if it were a normal word.

• A word was recognized as another, valid English word. In
this case, the confidence level for the word might be quite
high and the word would not normally be highlighted. For
instance, if a falsely recognized word was assigned a confi-
dence level of 97 percent, and Preview was set to highlight
words at 95 percent or below, then the wrong word would not
be highlighted. These words can be highlighted by raising
the threshold setting, although at high levels (98 percent or
99 percent), virtually every word in the document would be
highlighted. The only practical way to discover these errors
was for an editor to read through the document carefully.
Once errors were spotted, the correct words would be in-
serted.

• In rare cases, a line of text could be skipped in the OCR pro-
cess. Again, nothing would be highlighted, but fortunately
there would be obvious gaps in the text block where the
line was skipped. A careful reading of the document would
reveal these gaps. As a corrective, a new block of text could
be created to overlay the gap. The correct text could then be
typed in for the purpose of future searches.

In each of these cases, an attentive editor must catch the OCR
error and make appropriate changes to the text to verify accurate
search and retrieval. We did not edit enough documents to estimate
the average time needed for cleaning a complete document. Future
projects will need to budget extensive editing costs.

HTML and SGML/XML Marked-up Files

Conversion of scanned text to hypertext markup language (HTML)
format would provide a more readily accessible browsing format.
However, the text of each document would need to be fully edited
and formatted. As indicated above, the ASCII output from the OCR

23Preserving the Whole

technology we used could not provide us with text clean enough to
use in HTML. Moving text into documents adhering to the standard
general markup language/extensible markup language (SGML/
XML) is the most labor-intensive but also the most dynamic alterna-
tive for text applications. SGML/XML tagging allows customized
and robust access to specific pieces of the documentation (such as
question text and variable location information). SGML/XML Docu-
ment Type Definitions maintain the integrity of document content
and structure and also define the relationships among the elements.
The emerging social science documentation standard for both for-
matting and content, the Data Documentation Initiative (DDI)
Document Type Definition (DTD), provides standard elements
developed specifically for social science numeric resources. The
standard adheres to our requirement that text be stored in a system-
independent, nonproprietary format. Furthermore, this standard,
developed by representatives from the international social science
research community, is intended to fill the need for a structured co-
debook standard that will serve as an interchange format and permit
the development of new Web applications. However, this format
requires that the text be fully edited and the components of the docu-
mentation tagged, and funding for this work was not included in the
budget for this project.

24 Ann Green, JoAnn Dionne, and Martin Dennis

Upon completing the steps defined in both the data and documenta-
tion tracks, we carefully examined the processes of migrating hard-
ware- and software-dependent formats to independent formats. We
also evaluated the formats in relation to their utility and ease of use
over time. In both the data migration and the documentation migra-
tion processes, it was imperative that the original content be pre-
served. Migration that included recoding the content of the data files
(changing the character or numeric equivalents in a data file) proved
to be labor-intensive and error-prone, and produced unacceptable
changes to the original content of the data. Editing the text output
from the scanning process proved to be the same: error-prone, time-
consuming, and incomplete. Therefore, recoding as a part of migra-
tion is not recommended. However, simply copying a file in its origi-
nal format from medium to medium (refreshing) is not enough.

Software-dependent data file formats, such as the original col-
umn binary files examined in the project, cannot be read without
specific software routines. If standard software packages do not offer
those specific routines in the future, translation programs that emu-
late the software’s reading of the column binary format could pro-
vide a solution. However, these emulation programs will themselves
require migration strategies over time. We offer another alternative
for the column binary format: convert the data out of the column
binary format into ASCII without changing the coded values of the
files. The spread ASCII format meets the criterion of software inde-
pendence while simultaneously preserving the original content of
the data set. It does, however, require a file-by-file migration strategy
that would be time-consuming for a large collection of files.

Finding a parallel solution for the documentation files is not pos-
sible at this time. We can not accurately generate character-by-char-
acter equivalents of the paper records. We can, however, scan the pa-
per into digital representations that could be used in future character
recognition technologies. The Adobe PDF image+text format does
provide an interim solution by producing digital versions of the im-
age and limited ASCII representation of the text. However, the types
of documentation files produced by the Adobe process are software
dependent. If software packages move away from the format used
to store the image+text files, translators will be necessary to search,
print, and display the files. We therefore recommend archiving the
images of the printed pages in both nonproprietary TIFF format and
PDF image+text format.

User Evaluation

We asked faculty and graduate students to make an informal review
of the findings and sample output from the project. All our evalu-
ators had previous experience using data files from the Yale Roper
Collection. Regarding the data conversions, they expressed relief at
not having to use column binary input statements to read the data
files. They had no difficulty in using the chart that mapped column
binary to ASCII in order to locate variables in the spread ASCII

Findings and
Recommendations

25Preserving the Whole

version of the data files, once it was explained that each variable
mapped directly to a 12-column equivalent and instructions were
given for finding single- and multiple-punch locations.

As for the documentation track, faculty and student reviewers
found viewing and browsing PDF format files acceptable. Since most
users had accessed PDF files on the Web, they seemed comfortable
moving from the Internet browser to the Adobe Reader to locate
question text and variable location information. This may not be the
case with inexperienced users. These users were eager to have more
questionnaire texts available for browsing and searching. The lack of
a large sample collection of questionnaires did not allow evaluation
of question text searching on a large scale.

Findings about Data Conversion

Column binary into SAS and SPSS. As long as software packages can
read the SAS and SPSS export formats, recoding the column binary
format into SAS and SPSS export files is an attractive option. These
file formats can be used easily, are transportable to multiple operat-
ing systems and equipment configurations, and can be transformed
into other software-specific formats. They do, however, have a num-
ber of drawbacks.

First, the original data file must be recoded, a process that is
lengthy and potentially error-prone and one that places great reli-
ance on the person doing the translation. If that person does not ad-
equately check for errors, annotate the documentation for irregular
variables, or properly recode the original patterns of punches, the
translated data set becomes inconsistent with the original. Also, some
irregularities in the original data set, which may be meaningful in
the analysis of the data, can become lost when the data set is cleaned
up. For instance, the original documentation might indicate that a
question has four possible responses: PUNCH.1 through PUNCH.3
for a rating scale, and PUNCH.12 for a “don’t know” response.
On examination of the xray, though, it is discovered that about 200
people had their responses coded as PUNCH.11, not PUNCH.12. A
decision must be made: will those PUNCH.11 observations be given
the same special missing value code as that for PUNCH.12? This so-
lution will put the responses in the data set into accordance with the
documentation by assuming that the strange punches were simply
due to errors in data entry. On the other hand, the strange punches
could have been intentionally entered to mark out those observations
for special reasons that are not listed in the documentation. In this
case, it would be better to give the PUNCH.11 observations a special
missing value different from that for PUNCH.12. Once the recoding
is done, future researchers will be unable to re-create the original
data set with its irregularities.

Second, this process of reading, recoding, and cleaning data files
to produce SAS (or SPSS) system files and export files is very time-
consuming. For example, it took 20 hours of work to write, debug,
and double-check a SAS program to recode the data set for Roper

26 Ann Green, JoAnn Dionne, and Martin Dennis

Report 9209, which includes a split sample and a variety of variable
types. Assuming a wage of $15 an hour for an experienced SAS pro-
grammer, we would expect a cost of approximately $600 per data set
for a complete job of data recoding. This estimate, of course, does not
include the cost of consultations with data archivists about the recod-
ing of particular variables or the cost of rewriting documentation to
reflect the new format of the data set.

Third, data files stored in SAS and SPSS (and other statistical
software) formats require proprietary software to read the informa-
tion. Although there has been an increase in programs that can read
and transfer data files from one program, and one version of a pro-
gram, to another, there is no guarantee that programs for specific
versions of software will be available in the future. U.S. Census data
from the 1970s were produced in compressed format (called Dual-
abs) that relied on custom programs and can no longer be read on
most of today’s computing platforms. Such system- and software-
dependent formats require expensive migration strategies to move
them to future computing technologies.

Spread ASCII format. If an archival standard is defined as a non-
column binary, nonproprietary format that faithfully reproduces
the content of the original files, only the spread ASCII format meets
these conditions. This spread format, however, is at least 600 per-
cent larger than the original file and requires converting the original
column binary structure. It also requires producing additional docu-
mentation, since each punch listed in the original documentation
must be assigned a new column location in the spread ASCII data.
We recommend that each file be converted to a standard spread
ASCII format so that a single conversion map may be used for all the
data files (see Appendix 5 for an example from this project). Produc-
ing such an ASCII data set has several advantages. Information is
not lost from the original data set, because the pattern of 0s and 1s
remains conceptually the same across data files. It is unnecessary for
a data translator to interpose herself between the original data and
the final user.

However, the spread ASCII format is not perfect. The storage re-
quirements for spread ASCII data are on a par with the size require-
ments for a SAS data set containing both recoded and intermediate
variables. For the overhead in storage cost, the SAS data set at least
provides internally referenced variable names and meaningful vari-
able values. The size of the spread ASCII data becomes even more
apparent when it is contrasted with the size of a recoded ASCII data
set. In a recoded data set, each unused bit can be left out of the final
data; particular bits in a column need not even be input if they con-
tain no values for the variable, and columns without variables may
also be skipped. In contrast, in the spread ASCII data, each bit is in-
put and translated to a character, whether it is used or not.

The spread ASCII format requires that users must know how the
variables, particularly the multiple-response variables, relate to the
12-column equivalent. A spread ASCII data set is not as easily used
as a fully recoded one; after all, recoding the 0s and 1s into usable

27Preserving the Whole

variable values will fall to the end user with ASCII data, just as it
currently does with column binary data. Finally, each punch listed in
the original documentation must be assigned a new column location
in the spread ASCII data. Users must refer to an additional piece of
documentation, the ASCII data map, to locate data of interest, and
this extra step inevitably creates some initial confusion.

Hybrid spread ASCII. The hybrid spread ASCII format, distrib-
uted by the Roper Center and the Institute for Research in Social
Science at University of North Carolina, offers another alternative.
The original data are stored in column binary format in the first hori-
zontal layer of the file. This format preserves the original structure
of the data file in the first part of a new record. A second horizontal
layer of converted data, in spread ASCII format, is added to the new
record. The primary advantage of this hybrid spread ASCII data file
format is that users can access the nonbinary portions of the original
data file in their original column locations as indicated on the ques-
tionnaires. However, users have to know whether the question and
variables of interest were coded in the binary format in order to de-
termine whether to read the first part of the record or the second. The
ASCII codes in the first horizontal layer are readable, but any binary
coding in that first horizontal layer are not, since the binary coding
is converted to ASCII to avoid problems while reading the data with
statistical software. If users want to read data that were coded in
binary in the original file, they can read the spread ASCII version of
multiple-punched equivalents in the second horizontal layer without
having to learn the column binary input statements to read the data.

We chose to produce converted ASCII files that did not have this
two-part structure. To use the spread ASCII data files we construct-
ed, users first determine the original column location of a particular
variable from the questionnaire, and then use a simple data map to
locate the column location in the new spread ASCII file (see Appen-
dix 5).

Original column binary format. The column binary format itself
turned out to be more attractive as a long-term archival standard
than we had anticipated. It conserves space, it preserves the original
coding of data and matches the column location information in the
documentation, it can be transferred among computers in standard
binary, and it can be read by standard statistical packages on all of
the platforms we used in testing. Unfortunately, it is difficult to lo-
cate and decipher information about how to read column binary data
with SAS and SPSS, as the latest manuals (for PC versions of the soft-
ware) no longer contain supporting information about this format.
This lack of documentation support indicates the possibility that the
input formats will not be offered in subsequent software versions.

On the other hand, as long as the format exists, there seems to
be some level of commitment to support it. As stated in the SAS Lan-
guage: Reference text, “because multipunched decks and card-image
data sets remain in existence… the SAS System provides informats
for reading column-binary data.” (SAS 1990, 38-9). If the column
binary format is refreshed onto new media and preserved only in its

28 Ann Green, JoAnn Dionne, and Martin Dennis

original form, we recommend that sample programs for reading the
data with standard statistical packages, or a stand-alone translation
program, be included in the collection of supporting files. But even
with these supplemental programs, accessing and converting the
files will continue to present significant challenges to researchers.
Given these considerations, we do not recommend this format over
the spread ASCII alternative.

Findings about Documentation Conversion

The OCR output files from TextBridge Pro did not provide us with
an adequate means for archiving the textual material. The question-
naires we scanned had an unacceptable rate of character recognition,
including incorrect location information necessary for manipulating
the accompanying data files. Handwritten notes were completely
lost. Although the format allowed for searching of a particular text
that was successfully recognized, the amount of editing required to
produce a legible version of the original, review the output, and cor-
rect all errors was found to be prohibitive. Subsequent viewing was
poor without the formatting capabilities of proprietary word pro-
cessing software.

The PDF format provided solutions to some of the documenta-
tion distribution and preservation problems we faced, but it did
not meet all of our needs. For one thing, the format does not go far
enough in providing internal structure for the manipulation, output,
and analysis of the metadata. Like a tagged MARC record in an on-
line public access catalog, full-text documentation for numeric data
requires specific content tagging to allow search, retrieval, manipu-
lation, and reformatting of individual sections of the information.
Another drawback is that PDF files are produced and stored in a for-
mat that may be difficult to read and search in the future. The PDF
format, although a published standard, depends on proprietary soft-
ware that may not be available in future computing environments.
(A similar problem can be seen with dBase data files that are rapidly
becoming outmoded, causing major problems with large collections
of CD-ROM products distributed by the U.S. government.) We see
increasing numbers of PDF documents distributed on the Internet
and the format will be used by ICPSR for the distribution of ma-
chine-readable documentation to its member institutions. So, given
the large number of PDF files in distribution, software for conversion
will most likely be developed over time. However, the current popu-
larity of the PDF format does not guarantee that software to read it
will continue to be available throughout the future of technological
evolution.

The TIFF graphic image file format is useful for viewing and
for distribution on the Web and as an intermediate archival format,
allowing storage of files until they can be processed in the future us-
ing more advanced OCR technology. Even though this format does
not allow text searching, tagging/mark up, or editing, it moves the
endangered material into digital format. ICPSR has decided to retain

29Preserving the Whole

such digital images of its printed documentation collection for repro-
cessing as OCR technology evolves.

It is our recommendation that both PDF/Adobe Capture ed-
ited output and scanned image files be produced and archived. The
PDF/Adobe image+text files allow searching and viewing of text
in original formatting. The scanned image files can be archived for
future character recognition and enhancement. We also want to
emphasize the importance of the long-term development of tagged
documentation using the DDI format. This is by far the most desir-
able format, albeit one that is difficult to produce from printed docu-
mentation, given the inadequacy of OCR technology and the costs
of subsequent editing. We urge future producers and distributors of
numeric data to help develop and adhere to standard system- inde-
pendent documentation.

Recommendations to Data Producers

Design affects maintenance costs and long-term preservation. Producers
of statistical data files need to be cognizant of preservation strategies
and the importance of system-independent formats that can be mi-
grated through generations of media and technological applications.
In this project, we had significant problems with the column binary
format of the data. Had long-term maintenance plans been consid-
ered, and the costs of migration been taken into consideration, the
creators of the data format might not have chosen the column binary
format. At the time, however, it was the most compact format to use
and standard software could then be adapted to the format.

One thing is very clear: data producers would be advised and
should be persuaded to take long-term maintenance and preserva-
tion considerations into account as they create data files and as they
design value-added systems. Our experience shows that the most
simple format is the best long-term format: the flat ASCII data file.
We would urge producers to provide column-delimited ASCII files,
accompanied by complete machine-readable documentation in non-
proprietary and nonplatform-specific formats. Programming state-
ments (also known as control cards) for SAS and SPSS are also highly
recommended so that users can convert the raw data into system
files. The control card files can be modified for later versions of sta-
tistical software and used for other programming applications and
indexing.

In accordance with emerging standards for resource discovery,
data files should contain a standard electronic header or be accompa-
nied by machine-readable metadata identification information. This
information should include complete citations to all the parts of a
particular study (data files, documentation, control card files, and so
forth) and serve as a study-level record of contents and structure.

Metadata standards. Not only must standards be considered for
the structure of the numeric data files, but the metadata—informa-
tion describing the data—must also conform to content and format
standards for current use and for long-term preservation applica-

30 Ann Green, JoAnn Dionne, and Martin Dennis

tions. Content standards require common elements, or a common
set of “containers” that hold specific types of information. Standards
for coding variables should be followed so that linkages and cross-
study analysis are enhanced, and common thesauri for searching
and mining data collections also need to be produced. As for format
standards, metadata should be produced in system-independent for-
mats that provide standard structures for the common elements and
coding schemes. These format standards should provide consistent
tagging of elements that can be mapped to resource discovery and
viewing software and to statistical analysis and database systems.

For most social science data files, machine-readable documenta-
tion should be supplied in ASCII format that conforms to standard
guidelines for both content and format. With some very large sur-
veys using complex survey instruments, files in this ASCII format
may be so big that complex structures in nonproprietary format need
to be developed to reduce storage requirements. If paper documenta-
tion is distributed, it should be produced using high-quality duplica-
tion techniques with simple fonts, no underlining, no handwritten
notations, and plenty of white space.

Of particular interest is the Data Documentation Initiative (DDI)
DTD (Document Type Definition in XML), which is a developing
standard for documentation describing numeric databases. It pro-
vides both content and format standards for creating digitized docu-
mentation in XML. Data producers in the United States, Canada,
and Europe will be testing the DTD as part of their documentation
production process. Data archives will be converting their digitized
documentation into this format, and some will be scanning paper
documentation and tagging the content with the DDI.

 Complex statistical systems. We must also be concerned about the
long-term preservation plans for complex systems. As we see more
efforts to integrate data and documentation within linked systems,
we see a growing tension between access and preservation. Complex
database management systems such as ORACLE or SQL present us
with more complex questions: What parts of the system need to be
preserved to save the content of the information as well as its integ-
rity? Will snapshots of the system provide future users with enough
information to simulate access as we see it today? Is the content us-
able outside the context of the system? These are the database preser-
vation challenges of the future.

31Preserving the Whole

ASCII—American Standard Code for Information Interchange. A
character encoding scheme used by many computers. The ASCII
standard uses 7 of the 8 bits that make up a byte to define the codes
for 128 characters. Example: in ASCII, the number seven is a treated
as a character and is encoded as: 00010111. Because a byte can have a
total of 256 possible values, there are an additional 128 possible char-
acters that can be encoded into a byte, but there is no formal ASCII
standard for those additional 128 characters. Most IBM-compat-
ible personal computers do use an IBM extended character set that
includes international characters, line and box drawing characters,
Greek letters, and mathematical symbols.

C—A programming language.

CBw.d—Instructions that the SAS System uses to read standard nu-
meric values from column-binary files, translating the data into stan-
dard binary format. The w value specifies the width of the variable,
usually 8, but has a range between 1 and 32. The d value specifies the
number of digits to the right of the decimal point in the numeric value.

card—Also known as deck, a physical record of data. A survey may
have multiple cards for each respondent, all cards together compris-
ing a logical record. Based on the IBM punch cards of 80-column
length.

case—The unit of analysis in a particular data file. Can be an indi-
vidual respondent to a questionnaire, a customer, or an industry. In
the Roper Reports, each case is an interview respondent.

codebook—Description of the organization and content of a data
file. Contains the code ranges and the code meanings needed to in-
terpret the data file.

column binary—A code originally used with punched cards in
which successive bits are represented by the presence or absence of
punches in contiguous positions in columns. Using this method, re-
sponses to more than one question can be stored in a single column.

data dictionary—A file, part of a file, or part of a printed codebook
containing information about a data file, including the name of the
element, its format, location, and size.

Data Documentation Initiative (DDI)—An international committee
sponsored by ICPSR that is developing a new metadata standard for
social science documentation. This standard, developed by represen-
tatives from the international social science research community, is
intended to fill the need for a structured codebook standard that will
serve as an interchange format and permit the development of new
Web applications. The Document Type Definition (DTD) for the DDI

Glossary

32 Ann Green, JoAnn Dionne, and Martin Dennis

standard is written in XML (Extensible Markup Language) and is
available at http://www.icpsr.umich.edu/DDI/.

deck—Also known as card, a logical record of data. A survey may
have multiple cards for each respondent, all cards together compris-
ing a logical record. Based on the IBM punch cards of 80-column
length.

documentation—Information that accompanies a data file, describ-
ing the condition of the data, the creation of the file, the location and
size of variables in the file, and the values (or codes) of the variables.

export file—A file produced by a software package that is designed
to be read on another computer, often with a different operating sys-
tem, running a version of the same software package.

HTML—HyperText Markup Language

ICPSR—Inter-university Consortium for Political and Social Research

informat—The instructions that specify how SAS reads the numbers
and characters in a data file.

intermediate variable—A variable used when recoding data to input
information from individual punches in multipunch data. Sets of in-
termediate variables are then recoded to produce final variables.

logical record—A complete unit of data for a particular unit of anal-
ysis, in this project a single respondent. Multiple physical records,
called cards or decks, may make up a logical record.

missing value—A value code that indicates no data are present for a
variable for a particular case. To be distinguished from non-response
values (respondent refused to answer or was not asked the question)
and from invalid responses (the response did not have a valid value
code equivalent). Non-responses and invalid responses may or may
not have value categories provided in the questionnaire and may be
treated differently from true missing data during analysis.

multipunched—A way of recording data, originally used with
punched cards, in which successive bits are represented by the pres-
ence or absence of punches in contiguous positions in columns. Us-
ing this method, responses to more than one question can be stored
in a single column.

OCR—Optical character recognition

PDF—Portable Document Format, a published standard format de-
veloped by Adobe Systems, accessed with proprietary software.

33Preserving the Whole

punch card—A paper medium used for recording computer-read-
able data. The card is punched by a special machine called a key-
punch that works like a typewriter, except that it punches holes in
cards instead of typing characters on paper. The punch cards are
then processed with a card reader that transfers the punched infor-
mation to a computer-readable digital format.

PUNCH.d—Instructions that the SAS system uses to read standard
numeric values from column binary files. The d value specifies which
row in a card column to read. Valid values for the d value are 1
through 12.

questionnaire—The set of questions asked in a survey. In the Yale
Roper Collection, the questionnaire, with columns and codes written
next to the question, may substitute for a codebook.

recode—Changing the value code of a variable from one value to
another. For example, changing 0 and 1 values in column binary data
files to value ranges of 0 through 12. Also known as data transforma-
tion.

respondent—In survey research, the person responding to the sur-
vey questions.

ROWw.d—Instructions that the SAS system uses to read a column-
binary field down a card column. The w value specifies the row
where the field begins, with a range between 1 and 12. The d value
specifies the length in rows of the field. Valid values for d are 1
through 25, with the default value of 1. The informat assigns the rela-
tive position of the punch in the field range to a numeric variable.

SAS—Set of proprietary computer programs used for analysis of so-
cial science statistical data. (No longer an acronym; originally stood
for Statistical Analysis System.)

SGML—Standard General Mark-Up Language

SPSS—Statistical Package for the Social Sciences. Set of proprietary
computer programs used for analysis of social science statistical data.

single-punch—A single response coded in a column.

split sample—A method of data collection in which one group of
respondents is queried with one form of a questionnaire and the sec-
ond group is queried with a different form of the questionnaire.

spread—Recoding multiple responses that have been coded in a
single column of a record to a separate column for each response.

34 Ann Green, JoAnn Dionne, and Martin Dennis

system file—A data file or collection of data files specifically format-
ted for a particular software package; may not be readable by other
software packages.

TIFF—Tagged Image File Format

values—The numeric or character equivalents for a particular vari-
able in a data file.

variable—An item in a data file to which a value has been assigned.
A data file contains the values of certain variables measured for a
set of cases. In the Roper Report data files, variables are responses to
questions or parts of questions from each person interviewed.

XML—Extensible Markup Language (XML) is a data format for
structured document interchange on the Web.

xray—A form of output that is organized by card, column, and row;
each bit has its own unique location within this framework. The total
number of punched bits across all observations is recorded for each
location in the data set. This sum often provides a response frequen-
cy for individual response options.

Sources of Glossary Terms

Armor, David J., and Arthur S. Couch. 1972. Data-text Primer: An
Introduction to Computerized Social Data Analysis. New York: The Free
Press.

Dodd, Sue A. 1982. Cataloging Machine-readable Data Files: An interpre-
tive Manual. Chicago: American Library Association.

Dodd, Sue A., and Ann M. Sandberg-Fox. 1985. Cataloging Microcom-
puter Files: a Manual of Interpretation for AACR2. Chicago: American
Library Association.

Geda, Carolyn L. [n.d.] Data Preparation Manual. Sponsored by John
D. Peine, Project Coordinator, Heritage Conservation and Recreation
Service, U.S. Department of the Interior.

Jacobs, Jim. Glossary of Selected Social Science Computing Terms and So-
cial Science Data Terms. University of California, San Diego. Available
at http://odwin.ucsd.edu/glossary/index.html.

SAS Institute. 1990. SAS Language: Reference. Version 6, 1st ed. Cary,
NC: SAS Institute.

35Preserving the Whole

Sippl, Charles J. 1966. Computer Dictionary. Indianapolis: Howard W.
Sams & Co., Inc.

Sippl, Charles J., and Roger J. Sippl. 1980. Computer Dictionary. 3rd
ed. Indianapolis: Howard W. Sams & Co, Inc.

Spencer, Donald D. 1968. Computer Programmer’s Dictionary and Hand-
book. Waltham, MA: Blaisell Publishing Company.

SPSS, Inc. 1988. SPSS-X User’s Guide. 3rd ed. Chicago: SPSS, Inc.

Weik, Martin H. 1969. Standard Dictionary of Computers and Informa-
tion Processing. New York: Hayden Book Company.

36 Ann Green, JoAnn Dionne, and Martin Dennis

Adams, Margaret. 1996. Private e-mail message to JoAnn Dionne,
November 4.

Bearman, David. 1999. Reality and Chimeras in the Preservation of
Electronic Records. D-Lib Magazine 5(4). Available at
http://www.dlib.org/dlib/april99/bearman/04bearman.html.

Conway, Paul. 1996. Conversion of Microfilm to Digital Imagery: A Dem-
onstration Project. Performance Report on the Production Conver-
sion Phase of Project Open Book. New Haven, CT: Yale University
Library.

Elkington, Nancy E., ed. 1994. Digital Imaging Technology for Preserva-
tion. Proceedings from an RLG Symposium held March 17 and 18,
1994, Cornell University, Ithaca, NY. Mountain View, CA: Research
Libraries Group, Inc.

Kenney, Anne R., and Stephen Chapman. 1996. Digital Imaging for
Libraries and Archives. Ithaca, NY: Department of Preservation and
Conservation, Cornell University Library.

Inter-university Consortium for Political and Social Research. 1996.
Producing Electronic Forms of Documentation: The Experience at ICPSR.
Available at http://www.icpsr.umich.edu/ICPSR/
Developments/nsf.pdf.

JSTOR. 1996. Why Images? Available at http://index.umdl.umich.
edu/about/images.html.

Kenney, Anne R., and Stephen Chapman. 1995. Tutorial: Digital
Resolution Requirements for Replacing Text-Based Material: Methods for
Benchmarking Image Quality. Washington, DC: Commission on Preser-
vation and Access.

Michelson, Avra, and Jeff Rothenberg. 1992. Scholarly Communica-
tion and Information Technology: Exploring the Impact of Changes
in the Research Process on Archives. American Archivist 55:236-315.

National Archives and Records Administration, Archival Research
and Evaluation Staff. 1990. A National Archives Strategy for the Devel-
opment and Implementation of Standards for the Creation, Transfer, Access,
and Long-term Storage of Electronic Records of the Federal Government.
National Archives Technical Information Paper No. 8, June. Available
at gopher://gopher.nara.gov:70/00/managers/archival/papers/
strategy.txt.

Rockwell, Richard C. 1997. Message to the ICPSR OR-l
(orl@majordomo.srv.ualbera.ca) of February 27. Subject: ORL discus-
sion of PDF—ICPSR.

Reference List

37Preserving the Whole

Rothenberg, Jeff. 1995. Ensuring the Longevity of Digital Documents.
Scientific American 272(1):42-47.

Rothenberg, Jeff. 1999. Avoiding Technological Quicksand: Finding a
Viable Technical Foundation for Digital Preservation. Washington, DC:
Council on Library and Information Resources (January). Available
at http://www.clir.org/pubs/reports/reports.html.

SAS Institute. 1990. SAS Language: Reference. Version 6, 1st ed. Cary,
NC: SAS Institute.

SPSS, Inc. 1988. SPSS-X User’s Guide. 3rd ed. Chicago: SPSS, Inc.

Saffady, William. 1993. Electronic Document Imaging Systems: Design,
Evaluation, and Implementation. Westport, CT: Meckler Publishing.

Stielow, Frederick J. 1992. Archival Theory and the Preservation of
Electronic Media: Opportunities and Standards Below the Cutting
Edge. American Archivist 55:332–43.

Task Force on Archiving of Digital Information. 1996. Preserving Digi-
tal Information. Report to the Commission on Preservation and Access
and the Research Libraries Group. Washington, DC: Commission on
Preservation and Access. Multiple versions are available at: http://
www.rlg.org/ArchTF/.

38 Ann Green, JoAnn Dionne, and Martin Dennis

Appendix 1: Roper Report documentation page 3W: Questions 7-9

photocopy

39Preserving the Whole

/*
This snippet of a SAS program consists of two parts: the first part is an example of reading in column bi-
nary data, the second is an example of inputting the same data in spread ASCII format
*/
...
DATA ONE;
INFILE IN LRECL=160 RECFM=F;
INPUT
#1 @26 Q10_1 PUNCH.1
 @26 Q10_2 PUNCH.2
 @26 Q10_Y PUNCH.12
#9 @5 Q101_1 PUNCH.1
 @5 Q101_2 PUNCH.2
 @5 Q101_3 PUNCH.3
 @5 Q101_X PUNCH.11
 @5 Q101_Y PUNCH.11;

IF Q10_1=1 AND Q10_2=0 AND Q10_Y=0 THEN Q10=1;
 IF Q10_1=0 AND Q10_2=1 AND Q10_Y=0 THEN Q10=2;
 IF Q10_1=0 AND Q10_2=0 AND Q10_Y=1 THEN Q10=99;
IF Q101_1=1 AND Q101_2=0 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=1;
 IF Q101_1=0 AND Q101_2=1 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=2;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=1 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=3;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=0 AND Q101_X=1 AND Q101_Y=0
 THEN Q101=4;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=1
 THEN Q101=99;
...
DATA ONE;
INFILE IN LRECL=960 RECFM=F;
INPUT
#1 @301 Q10_1
 @302 Q10_2
 @312 Q10_Y
#9 @49 Q101_1
 @49 Q101_2
 @49 Q101_3
 @49 Q101_X
 @49 Q101_Y;

IF Q10_1=1 AND Q10_2=0 AND Q10_Y=0 THEN Q10=1;
 IF Q10_1=0 AND Q10_2=1 AND Q10_Y=0 THEN Q10=2;
 IF Q10_1=0 AND Q10_2=0 AND Q10_Y=1 THEN Q10=99;
IF Q101_1=1 AND Q101_2=0 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=1;
 IF Q101_1=0 AND Q101_2=1 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=2;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=1 AND Q101_X=0 AND Q101_Y=0
 THEN Q101=3;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=0 AND Q101_X=1 AND Q101_Y=0
 THEN Q101=4;
 IF Q101_1=0 AND Q101_2=0 AND Q101_3=0 AND Q101_X=0 AND Q101_Y=1
 THEN Q101=99;

Appendix 2: Sample SAS input and recode statements

40 Ann Green, JoAnn Dionne, and Martin Dennis

Appendix 3: Data conversion formats and storage requirements

mroftalP noitpircseDtesataD
)tropeRrepoR3991.tpeS(

egarotS
stnemeriuqeR

)setybni(

foegatnecreP
lanigirO

llA
smroftalp

)yranib-nmuloc(lanigirO 004,858,2

CPMBI
stesatad

)selbairavfoteslluf(tesatadSAS 489,464,91 186

)selbairavfoteslluf(tesatadTROPXSAS 027,441,91 076

foteslluf(sregetnietyb4htiwtesatadSAS
)selbairav 211,879,9 943

foteslluf(sregetnietyb3htiwtesatadSAS
)selbairav 291,825,7 362

)selbairavfoteslaitrap(tesatadSAS 063,978,8 113

)selbairavfoteslaitrap(tesatadTROPXSAS 067,348,8 903

foteslaitrap(sregetnietyb4htiwtesatadSAS
)selbairav 293,175,4 061

foteslaitrap(sregetnietyb3htiwtesatadSAS
)selbairav 616,174,3 121

emarfniaM
stesatad

)selbairavfoteslluf(tesatadSAS 002,743,32 718

)selbairavfoteslluf(tesatadTROPXSAS 027,441,91 076

)selbairavfoteslaitrap(tesatadSAS 002,950,11 783

)selbairavfoteslaitrap(tesatadTROPXSAS 067,348,8 903

41Preserving the Whole

Part one: The SAS Macro
%INCLUDE ‘j:\statlab\roper\data\spread.mac’;
* ALWAYS INDICATE FULL PATH & DATASET NAME OF *;
* COLUMN-BINARY DATA (DSN=) AND THE FULL PATH *;
* & DATASET NAME OF THE SPREAD DATA (OUT=) *;
* IN THE MACRO CALL *;
%SPREAD(DSN=h:\ssda\roper\reports\rprr9309\rprr9309.bin,
 OUT=h:\ssda\roper\reports\rprr9309\rprr9309.spr);

RUN;

Part two: Read in column binary data, convert to ASCII; create data map showing new column locations
%MACRO SPREAD(DSN=,OUT=);
OPTION ERRORS = 0; /* CHANGES INVALID DATA MESSAGES TO WARNINGS */
OPTIONS NONUMBER NODATE;
options ps=58;
DATA _NULL_;
INFILE “&DSN” lrecl=160 recfm=f;
FILE “&OUT” lrecl=960 ;
length a $1;
DO i=1 TO 80;
 INPUT @i A $CB1. @i row1 punch.1
 @i row2 punch.2
 @i row3 punch.3
 @i row4 punch.4
 @i row5 punch.5
 @i row6 punch.6
 @i row7 punch.7
 @i row8 punch.8
 @i row9 punch.9
 @i row10 punch.0
 @i row11 punch.11
 @i row12 punch.12 @;
 PUT @(1+(12*(i-1))) (row1-row12) (1.) @;
END;
put;
options ls=80;
data _null_;
file print;
title DATA MAP FOR COLUMN-BINARY SPREAD DATA;
title3 NOTE: Rows 1-9,0,X,Y correspond to columns 1-12.;
put; put; put;
do i = 1 to 40;
 col1 = 1 + (12*(i-1));
 col2 = 12 + (12*(i-1));
 col3 = 1 + (12*(40+i-1));
 col4 = 12 + (12*(40+i-1));
 cola = i;
 colb = 40 + i;
 put @1 “Column “ cola 2. “ maps to “ col1 4. “ through “ col2 4. @;
 put @41 “Column “ colb 2. “ maps to “ col3 4. “ through “ col4 4. @;
 put;
end;

run;

%MEND;

Appendix 4: Programs to create spread ASCII datasets

42 Ann Green, JoAnn Dionne, and Martin Dennis

Column 1 maps to 1 through 12
Column 2 maps to 13 through 24
Column 3 maps to 25 through 36
Column 4 maps to 37 through 48
Column 5 maps to 49 through 60
Column 6 maps to 61 through 72
Column 7 maps to 73 through 84
Column 8 maps to 85 through 96
Column 9 maps to 97 through 108
Column 10 maps to 109 through 120
Column 11 maps to 121 through 132
Column 12 maps to 133 through 144
Column 13 maps to 145 through 156
Column 14 maps to 157 through 168
Column 15 maps to 169 through 180
Column 16 maps to 181 through 192
Column 17 maps to 193 through 204
Column 18 maps to 205 through 216
Column 19 maps to 217 through 228
Column 20 maps to 229 through 240
Column 21 maps to 241 through 252
Column 22 maps to 253 through 264
Column 23 maps to 265 through 276
Column 24 maps to 277 through 288
Column 25 maps to 289 through 300
Column 26 maps to 301 through 312
Column 27 maps to 313 through 324
Column 28 maps to 325 through 336
Column 29 maps to 337 through 348
Column 30 maps to 349 through 360
Column 31 maps to 361 through 372
Column 32 maps to 373 through 384
Column 33 maps to 385 through 396
Column 34 maps to 397 through 408
Column 35 maps to 409 through 420
Column 36 maps to 421 through 432
Column 37 maps to 433 through 444
Column 38 maps to 445 through 456
Column 39 maps to 457 through 468
Column 40 maps to 469 through 480

Appendix 5: Data map for column binary spread data

Column 41 maps to 481 through 492
Column 42 maps to 493 through 504
Column 43 maps to 505 through 516
Column 44 maps to 517 through 528
Column 45 maps to 529 through 540
Column 46 maps to 541 through 552
Column 47 maps to 553 through 564
Column 48 maps to 565 through 576
Column 49 maps to 577 through 588
Column 50 maps to 589 through 600
Column 51 maps to 601 through 612
Column 52 maps to 613 through 624
Column 53 maps to 625 through 636
Column 54 maps to 637 through 648
Column 55 maps to 649 through 660
Column 56 maps to 661 through 672
Column 57 maps to 673 through 684
Column 58 maps to 685 through 696
Column 59 maps to 697 through 708
Column 60 maps to 709 through 720
Column 61 maps to 721 through 732
Column 62 maps to 733 through 744
Column 63 maps to 745 through 756
Column 64 maps to 757 through 768
Column 65 maps to 769 through 780
Column 66 maps to 781 through 792
Column 67 maps to 793 through 804
Column 68 maps to 805 through 816
Column 69 maps to 817 through 828
Column 70 maps to 829 through 840
Column 71 maps to 841 through 852
Column 72 maps to 853 through 864
Column 73 maps to 865 through 876
Column 74 maps to 877 through 888
Column 75 maps to 889 through 900
Column 76 maps to 901 through 912
Column 77 maps to 913 through 924
Column 78 maps to 925 through 936
Column 79 maps to 937 through 948
Column 80 maps to 949 through 960

NOTE: Rows 1-9,0,X,Y correspond to columns 1-12.

43Preserving the Whole

Appendix 6: Roper Report documentation page 4 W/Y: Question 10

photocopy

44 Ann Green, JoAnn Dionne, and Martin Dennis

Appendix 6: Roper Report documentation page 4 W/Y: Question 10

TextBridge Pro

45Preserving the Whole

Appendix 6: Roper Report documentation page 4 W/Y: Question 10

PDF in Acrobat Exchange

